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Abstract: 

 This study presents a mathematical model to simulate brain tumour dynamics under chemo-

immunotherapy, leveraging a deep neural network (DNN) approach alongside the classical fourth-

order Runge-Kutta (RK-4) method to compare solution accuracy. Our model incorporates the 

interactions of glial cells, glioma cells, neurones, and CD8+ T cells, capturing the effects of combined 

therapeutic strategies on tumour progression. The DNN framework was meticulously designed with 

varying hidden layer configurations, allowing an in-depth analysis of the relationship between model 

depth and approximation accuracy. The neural network methodology and the RK-4 method are 

compared in this paper using an exact solution as the basis for comparison. The findings indicate that 

the proposed method offers dependability for non-linear dynamics and is comparable to traditional 

techniques in a general sense. Through the use of this versatile and dependable technology, specialists 

are able to get a deeper understanding of the complex linkages that underlie bio-mathematical systems. 
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1. Introduction 

In the context of drug-induced drug creation, mathematical models provide a framework that may be 

used to comprehend the behaviour of cancer cells. It is possible for physicians to forecast and manage 

the behaviour of malignant tumours with the use of models, which serve to decrease the amount of 

time and money associated with medical tests. Consequently, doctors and biologists are becoming 

increasingly conscious of the value of computer modelling in creating healthcare knowledge and 

methodologies [1, 2]. It has become possible to investigate a wide range of cancer features via the use 

of mathematical models of tumour growth [3, 4]. The proliferation of cancers under continuous and 

pulsed therapy was the subject of research conducted by Borges et al. [5], who developed a model to 

examine the phenomenon. Tumour-immune interaction models were utilised by Nani and Freedman 

[6] to explore immunotherapy for tumours. The establishment of mathematical frameworks to assess 

radiotherapy’s effectiveness in cancer treatment was pioneered by Belostotski and Freedman [7]. 

McMahon, [8], highlighted therapy’s use. interpretations and problems in cancer treatment. The 

influence of radiation on the spread of tumour cells and the proliferation of normal cells has been 

documented in [9, 10, 11]. Brain tumours relate to cell growth, multiplication, and sometimes 

unregulated development. Brain tumours arise in a number of types. While some brain tumours are 
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benign, some are aggressive. Tumours are generally split into two groups: primary malignancies, 

which develop inside the brain, and secondary cancers, sometimes known as brain metastasis tumours, 

which typically have spread from tumours outside the brain [12]. Different therapies vary depending 

on the tumour’s magnitude, location, and phase. The therapy used to destroy the cancer cells must 

spread quicker than tumour development. Surgery, chemotherapy, radiation therapy, and 

immunotherapy are only a few therapies that may be used to treat brain tumours [13, 14]. The treatment 

choice is influenced by the sort of brain tumour and the patient’s health. 

DNN [15] have demonstrated great promise in resolving dynamical systems owing to their power to 

recognise complicated, non-linear relationships among input and output variables. DNN has shown 

substantial effectiveness in modelling and predicting the behaviours displayed by complicated, non-

linear systems. Standard numerical approaches [16] to solve complicated non-linear differential 

equations need large processing resources and simplification of the underlying system, which may not 

always be acceptable. The utilisation of DNN bears promise for improving the administration and 

forecasting of sophisticated non-linear dynamical systems in many sectors [17, 18, 19]. By offering 

the strong technique of capturing non-linear dynamics, DNN holds great opportunities for advancing 

our grasp of intricate systems and inventing more effective strategies for regulating and forecasting 

their behaviour. Biological neurones are both the functional and structural parts of the neurological 

system [20, 21]. Biological neurones consist of 4 basic parts: dendrites, soma (cell body), axons, and 

synapses. Dendrites, soma, axon, and synapses operate as receiver, communicator, processor, and 

linker [22, 23]. Comparing real and artificial neurones, the input, hidden, and output layers of artificial 

neurones work analogously to dendrites, soma, and axons, respectively, in biological neurones. 

Synapses in organic neurones operate like connectors or weights in artificial neurones [24, 25, 26]. In 

general, developing a non-linear function that accurately relates independent and de pendent variables 

presents a significant challenge. Although established methods for creating mathematical models exist, 

their predictability remains a subject of ongoing debate and scrutiny [27, 28, 29, 30]. While solving 

simultaneous non-linear equations is often perceived as straightforward, this process typically requires 

linearisation to be feasible [31, 32]. Therefore, in this study, a biologically inspired algorithm, namely 

the artificial neural network (ANN), is employed to establish a relationship between the independent 

and dependent variables. In the study conducted by K. C. Iarosz et al. [33], it was observed that healthy 

cells exhibit a distinctive response in relation to the presence of various tumours and the administration 

of chemotherapy, highlighting the interactions between these biological entities. Addition ally, S. 

Khajanchi et al. [34] investigated the dynamics of cancer progression alongside the role of 

macrophages and CD8+ T cells in this process. Their work notably emphasises that these immune 

components engage with the tumour without impeding the proliferation of healthy cells. Building upon 

these foundational studies, another investigation [35] explored both analytical and numerical solutions 

for modelling the interaction between glial cells, chemo-immunotherapy, and cancerous cells. Inspired 

by these prior insights, the present study aims to pioneer a novel computational framework that 

leverages neural networks to model brain tumour responses to chemo-immunotherapy. This 

framework is designed to enhance the mathematical modelling process by integrating neural network 

methodologies into the chemo-immunotherapeutic treatment model for brain tumours, as outlined in 

[35]. The objective is to achieve a more accurate representation of the complex biological interactions 

involved, thereby advancing the potential for predictive modelling in tumour responses. The work is 

organised as follows: The computational modelling of a brain tumour treated with chemotherapy and 

immunotherapy is illustrated in section 2. The structure of DNN and the recommended neural network 

technique are presented in section 3. In section 4, the numerical findings are described. Section 5 is 

kept over for its conclusion. 

 

2. Mathematical Model 

This section provides a detailed description of a dynamic model for brain tumour progression under 

the influence of chemo-immunotherapy: 

𝑑𝑌1(𝑡)

𝑑𝑡
    = 𝛿1𝑌1(𝑡) (1 −

𝑌1(𝑡)

𝐾1
) − 𝛿2𝑌1(𝑡)𝑌2(𝑡) −

𝛿3𝑌1(𝑡)𝑌4(𝑡)

𝑚1 + 𝑌1(𝑡)
,                                       (1) 
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𝑑𝑌2(𝑡)

𝑑𝑡
= 𝛿4𝑌2(𝑡) (1 −

𝑌2(𝑡)

𝐾2
) − 𝛿5𝑌1(𝑡)𝑌2(𝑡) −

𝛿6𝑌2(𝑡)𝑌4(𝑡)

𝑌2(𝑡) + 𝑚2

 −
(𝛿7𝑌5(𝑡) + 𝛿8𝑌6(𝑡))𝑌2(𝑡)

𝑌2(𝑡) + 𝑚3
,

                                         (2) 

𝑑𝑌3(𝑡)

𝑑𝑡
   = 𝛿9𝑌1̇(𝑡)𝑅(−𝑌1̇)𝑌3(𝑡) −

𝛿10𝑌3(𝑡)𝑌4(𝑡)

𝑌3(𝑡) + 𝑚4
,                                                                  (3) 

𝑑𝑌4(𝑡)

𝑑𝑡
   = 𝛿11 − 𝛿12𝑌4(𝑡),                                                                                                            (4) 

𝑑𝑌5(𝑡)

𝑑𝑡
   = 𝛿13𝑌5(𝑡) (1 −

𝑌5(𝑡)

𝐾4
) −

𝛿14𝑌2(𝑡)𝑌5(𝑡)

𝑚5 + 𝑌2(𝑡)
,                                                                (5) 

𝑑𝑌6(𝑡)

𝑑𝑡
  =

𝛿15𝑌2(𝑡)𝑌6(𝑡)

𝑚6 + 𝑌2(𝑡)
− 𝛿16𝑌6(𝑡) −

𝛿17𝑌2(𝑡)𝑌6(𝑡)

𝑚7 + 𝑌2(𝑡)
+ 𝛿18𝛿19.                                         (6) 

The mathematical model under consideration consists of six distinct components, each representing a 

crucial biological or pharmacological factor influencing brain tumour dynamics. The model 

incorporates the following variables: 𝑌1(𝑡), denoting the concentration of glial cells in units of 𝐾𝑔/𝑚3; 

𝑌2(𝑡), the density of glioma cells (tumour cells) also in 𝐾𝑔/𝑚3; 𝑌3(𝑡), the concentration of neurone 

cells measured in 𝐾𝑔/𝑚3; 𝑌4(𝑡), the concentration of the chemotherapeutic agent in 𝑚𝑔/𝑚2; 𝑌5(𝑡), 
the density of macrophages in 𝐾𝑔/𝑚3; and 𝑌6(𝑡), the concentration of CD8+ T cells also measured in 

𝐾𝑔/𝑚3. Each of these variables is governed by a system of differential equations that capture their 

interactions over time. 

𝑅(𝜖) =  {

0,              𝜖 < 0,
1

2
,             𝜖 = 0,

1,              𝜖 > 0.

                               (7) 

In (1), (2), and (5), the first term represents the proliferation of cells, describing their natural growth 

or replication over time. In (1) and (2), the second term models the interaction between healthy cells 

and cancerous glioma cells. This term accounts for how the healthy glial and neurone cells are affected 

by the presence of tumour cells. The third term in (1) and (2) represents the effect of the 

chemotherapeutic agent, 𝑌4(𝑡), on both glial and tumour cells. This term quantifies how the 

administered drug alters the population dynamics of these cells. In (2), the final term accounts for the 

immune-mediated elimination of glioma cells 𝑌2(𝑡), through their interaction with macrophages 

(𝑌5(𝑡)) and CD8+ T cells (𝑌6(𝑡)). This term highlights the role of the immune system in targeting and 

reducing tumour cells. (3) focuses on neurone cells (𝑌3(𝑡)), where the first term represents the neurone 

population’s dependence on glial cells (𝑌1(𝑡)), as glial cells play a key supportive role in neurone 

function. The second term captures the interaction between neurones and the chemotherapeutic agent, 

reflecting how the drug may impact healthy neurons. In (4), the first term describes the dynamics of 

the chemotherapeutic agent, 𝑌4(𝑡), particularly its rate of administration or concentration over time. 

The second term represents the natural decay or degradation of the drug in the body as the 

concentration diminishes due to metabolic processes and other clearance mechanisms. (5) models the 

behaviour of macrophages (𝑌5(𝑡)). The final term in this equation signifies the deactivation or 

reduction of macrophages due to interactions with glioma cells, 𝑌2(𝑡). This term reflects how tumour 

cells can evade or suppress immune responses by reducing macrophage activity. Finally, in (6), the 

first term reflects the recruitment of CD8+ T cells (𝑌6(𝑡)) by glioma cells (𝑌2(𝑡)), as tumour cells may 

induce an immune response by attracting T cells to the site of malignancy. The second term describes 

the natural decay rate of T cells, which can occur due to the brain’s inflammatory response or other 

physiological factors. The third term represents the elimination of T cells due to their interaction with 

glioma cells, which may reduce the population of T cells as they engage and destroy tumour cells. 

Parameters 𝛿18 and 𝛿19 are key factors in the model, where 𝛿18 measures the efficacy of the therapy 

and 𝛿19 represents an external source of CD8+ T cells, potentially from immunotherapy treatments. 
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Table: 1. List of symbols and abbreviations. 

Parameter Values Source 

𝛿1 0.0068 𝑑𝑎𝑦−1 Proliferation rate [36, 37] 

𝛿5 0.68 𝑑𝑎𝑦−1 Proliferation rate [36, 37] 

𝛿9 0-0.02 Loss influences [36] 

𝛿3, 𝛿10 2.4 × 10−5 𝑚2(𝑑𝑎𝑦.𝑚𝑔)−1 Predation Coefficients [36 38] 

𝛿6 0.24 × 10−3 𝑚2(𝑑𝑎𝑦.𝑚𝑔)−1 Predation Coefficients [36, 38] 

𝛿11 0-400 𝑚𝑔(𝑚2. 𝑑𝑎𝑦)−1 Chemotherapy rate [39] 

𝛿12 0.2𝑑𝑎𝑦−1 Chemotherapy rate [40] 

𝑚1, 𝑚2, 𝑚3 510 Holling type 2 [41] 

𝛿2 3.6 × 10−5𝑑𝑎𝑦−1 Competition Coefficients [36] 

𝛿5 3.6 × 10−6𝑑𝑎𝑦−1 Competition Coefficients [36] 

𝐾 = 𝐾1, 𝐾2, 𝐾3 510 𝑘𝑔/𝑚3 Carrying Capacity [41] 

 

Table: 2. Values of Normalized Parameter. 

Parameter Values Source 

𝛿7 0.069943 [42] 

𝛿8 2.74492 [42] 

𝑚3 0.90305 [43] 

𝛿13 0.3307 [42] 

𝛿14 0.0194 [42] 

𝑚5 0.030584 [43] 

𝛿15 0.1245 [44] 

𝑚6 2.8743 [44] 

𝛿16 0.0074 [42] 

𝛿17 0.01694 [43] 

𝑚7 0.378918 [43] 

 

3. Chemo-Immunotherapy Model of Brain Tumour with Neural Network 

We employed a DNN-based technique to solve a system of non-linear differential equations to emulate 

the before described difficulty. To solve differential equations, DNN initially codes the equation as a 

loss function for optimal concerns, and it then utilises it to limit the deficit through various optimising 

procedures. A detailed discussion of the functioning and efficiency of neural networks is given here. 

3.1. Data Acquisition 

To approximate the solution of a system of equations using a neural network, the type of data typically 

employed comprises input features and the corresponding values of the dependent variable. In the 

context of a differential equation system, the input features are the parameters. It is necessary to 

determine the values for these parameters and the time interval for estimation. The solutions of the 

system [1]-[6] at time t are represented as 𝑌1(𝑡), 𝑌2(𝑡), 𝑌3(𝑡), 𝑌4(𝑡), 𝑌5(𝑡), and 𝑌6(𝑡). These solutions 

are unknown and need to be estimated by a DNN. Utilising the data set, the fully connected layer can 

estimate the dependent variable for new input configurations by identifying underlying patterns and 

relationships between the dependent variable values and the input properties. The NeuroDiffEq Python 

package is configured to divide the data set into training and testing sets, facilitating this estimation 

process. 

3.2. Design of a Neural Network 

As outlined by the proposed technique, a fully connected neural network (FCNN) serves as the 

fundamental framework to achieve the research objectives. The specified model is structured such that 
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each neural network, tailored for the dependent variables, comprises one input layer, five fully 

connected hidden layers, and one output layer. Each of the hidden layers contains 32 neurons. An 

activation function excites the input at each stage before passing it to the subsequent layer, with the 

primary role of introducing non-linearity to the network and thereby facilitating neuronal activation. 

The Tanh activation function, noted for its continuous and smooth properties, is employed in our 

design. This characteristic of the Tanh activation function is particularly beneficial for gradient-based 

optimisation strategies, such as back propagation, due  

to the network’s continuous and differentiable outputs. 

To optimise the neural network, we manually adjusted various parameters in the DNN baseline 

design, including the learning rate, activation function, optimisation method, number of layers, and 

number of neurones per layer. The internal workings of the neural network are depicted in Figure [1], 

which illustrates the simulation of a particular scenario. The network comprises several layers 

interconnected by weighted connections: input, hidden, and output layers. Each layer performs 

specific computations to evaluate the system’s performance. 

 
Figure 1: Design of Neural Network. 

3.3.  Training and Loss Validation of the Model 

The initial configuration is completed, followed by the stochastic initialisation of weights and biases 

to commence model training. We set a learning rate of 0.01 and trained over 3000 epochs. The input 

data is propagated through the network, with the output transmitted to subsequent layers after applying 

the activation function and calculating the average weighted inputs for each layer. The activation 

function evaluates whether a neurone should activate to relay the output to the next layer based on a 

predetermined threshold. This process iterates until reaching the output layer, enhancing the expressive 

capability of the fully connected layer through the activation function. 

The model’s performance is evaluated using the predicted output, calculated via an appropriate loss 

function. Mean squared error (MSE) is employed to quantify the average disparity between the 

predicted and actual output values, thus assessing the model’s efficacy during training. 

𝑀𝑆𝐸 =
1

𝑛
[∑(𝑝𝑖 − 𝑞𝑖)

𝑛

𝑖=1

],                     (8) 

where, 𝑛 = the total number of data points in the dataset, 

𝑝𝑖= the true value of the 𝑗-th sample, 

𝑞𝑗 represents the predicted value for the same sample. 

The model’s objective is to improve prediction accuracy by minimising the loss function through 

optimisation techniques during the back propagation process, as described in . For this purpose, we 

employed the Adam (Adaptive Moment Estimation) algorithm, an optimisation method that leverages 

both energy-based momentum and an adaptive learning rate and integrates these components for more 

efficient parameter updates. 
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The Adam algorithm can be expressed analytically by considering the following: 

{
 
 

 
 
𝑞𝑡 = 𝜆𝑞𝑡−1 + (1 − 𝜆)𝑤𝑡

2,

𝑢𝑡 = √𝛼𝑢𝑡−1 + (1 − 𝛼)𝑤𝑡
2,

𝑣𝑡+1 = 𝑞𝑡 − 𝛽
(1 − 𝛼)𝑞𝑡
(1 − 𝜆)𝑢𝑡+𝛾

.

 

At each iteration 𝑡, the first-moment estimate, denoted by 𝑞𝑡, corresponds to the mean of the gradients 

evaluated at time 𝑡. The parameters 𝜆 and 𝛼 introduce exponential decay factors that govern the 

influence of past gradients in the update process. Concurrently, the variance of the gradients at each 

time step is captured by 𝑢𝑡, which represents the second-moment estimate. The  

gradient itself, computed at time 𝑡, is symbolised by 𝑤𝑡. 
 

The learning rate, 𝛽, controls the magnitude of the parameter update at each step, influencing the rate 

at which the model converges to an optimal solution. The updated parameter value at time 𝑡 + 1, 

denoted as 𝑣𝑡+1, reflects the cumulative impact of the gradients up to the current iteration, 

incorporating both the first- and second-moment estimates. 

 

Through the combination of these factors, Adam dynamically adjusts the learning rate for each 

parameter, ensuring that convergence is both efficient and stable, especially in scenarios involving 

noisy gradients or sparse data. This makes Adam particularly effective for deep learning applications, 

where large datasets and complex architectures demand robust optimisation techniques. 

3.4.  Assessment of the Effectiveness of the Model 

Upon completing the framework’s training, we proceed to the validation phase. This phase is crucial 

for optimising the model’s performance, achieved by adjusting parameters such as the learning rate 

and the number of epochs. Ultimately, the results are compared with those obtained using a traditional 

numerical method to evaluate the accuracy and loss of the proposed methodology. The Python 

programming language is employed to simulate and visualise the outcomes of our differential equation 

system model. 

 

4. Numerical Simulations 

This section will present the simulation results obtained using the proposed DNN approach. For the 

brain tumour model described by equations [1] to [6], we apply the suggested FCNN methodology, 

accompanied by detailed explanations of each step in the simulation process. Tables 1 and 2 list and 

analyse the values of key parameters within the brain tumour model, providing insight into their roles 

in simulating tumour dynamics. To assess the performance of the FCNN model, we compare it with 

the classical fourth-order RK-4 method, employing the RK-4 method as a reference for the exact 

solution. For validation, the FCNN was trained on the defined brain tumour model along with the 

specified initial conditions to evaluate the neural network’s accuracy. Differences between the FCNN-

generated results and the exact solutions are used as a measure of accuracy in these simulations. The 

entire simulation process, including the training and validation of the neural network model, was 

implemented using Python. 
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Figure 2. Comparing the Exact solution of glial cells with DNN and RK-4 

 
Figure 3. Comparing the Exact solution of glioma cells with DNN and RK-4. 
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Figure 4. Comparing the Exact solution of Neurons with DNN and RK-4. 

 

 
Figure 5. Comparing the Exact solution of CD8+ T cells with DNN and RK-4. 

 

 
Figure 6. Error of ANN solution from numerical solutions 

Figures 2 to 5 offer a comparative analysis between the exact solution, the fourth-order RK-4 method, 

and the solutions derived from the DNN model. These graphical representations reveal how accurately 

the DNN approximates the solution for the non-linear dynamical system governing brain tumour 

behaviour.  Specifically, in Figures 2 to 5, the plots showcase star lines indicating the DNN 

approximation, dashed lines for the RK-4 method, and dotted lines representing the exact solution, all 

of which align closely, highlighting the predictive accuracy of the DNN approach. 

 

Although traditional numerical techniques like the RK-4 method are reliable, they can become 

computationally intensive, especially when applied to complex systems or models of high 

dimensionality. As the number of iterations increases, the computational cost rises significantly. By 

contrast, once trained, the DNN model offers a substantial advantage by delivering predictions and 

solutions much faster than iterative numerical methods, making it highly suitable for applications 

requiring rapid computations. 

Figure 6 illustrates the error between an ANN solution and a numerical reference solution over a 10-

day period, specifically for modelling the growth dynamics of various cell types involved in brain 

tumour responses. The x-axis represents time in days, while the y-axis shows the cell growth error. 

The legend indicates four cell types: glial cells (blue), glioma cells (yellow), neurones (green), and 

CD8+ T cells (red). Remarkably, each error line is almost flat at zero, suggesting that the ANN solution 
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closely approximates the numerical solution with minimal deviation across all cell types throughout 

the time frame. This near-zero error indicates a highly accurate ANN model, likely due to an effective 

selection of network architecture—such as the appropriate number of hidden layers and neurones—

and a well-curated training dataset. Such precision implies that the ANN can reliably simulate cell 

growth without significant computational cost, providing a valuable approximation method for 

understanding cell dynamics in complex treatments like chemo-immunotherapy. This high accuracy 

positions the ANN as a practical tool for predicting cell behaviour in brain tumour models, potentially 

aiding treatment simulations where computational efficiency and accuracy are crucial. 

Table 3.  Error analysis of exact solution of glial cells, with ANN and RK-4. 

TIME EXACT ANN RK ANN Error RK-4 Error 

0.0 0.8000000000 0.8000000000 0.8000000000 0.0000000000 0.0000000000 

1.0 0.7978668340 0.7981420681 0.7982038702 0.0002752340 0.0003370362 

2.0 0.7959366469 0.7963166615 0.7964140977 0.0003800145 0.0004774507 

3.0 0.7941979384 0.7945537524 0.7946502020 0.0003558139 0.0004522636 

4.0 0.7926398144 0.7928444033 0.7929282796 0.0002045889 0.0002884652 

5.0 0.7912519579 0.7911878840 0.7912610203 0.0000640739 0.0000090624 

6.0 0.7900246016 0.7895942480 0.7896579860 0.0004303536 0.0003666156 

7.0 0.7889485002 0.7880719710 0.7881260357 0.0008765293 0.0008224645 

8.0 0.7880149048 0.7866241655 0.7866698020 0.0013907393 0.0013451028 

9.0 0.7872155372 0.7852515923 0.7852921478 0.0019639449 0.0019233894 

10.0 0.7865425663 0.7839548428 0.7839945698 0.0025877236 0.0025479965 
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Table 4.  Error analysis of exact solution of glioma cells, with ANN and RK-4. 

TIME EXACT ANN RK ANN Error RK-4 Error 

0.0 0.2000000000 0.2000000000 0.2000000000 0.0000000000 0.0000000000 

1.0 0.1891285924 0.2010853557 0.2012045324 0.0119567634 0.0120759400 

2.0 0.1788481222 0.2008208816 0.2009446381 0.0219727594 0.0220965159 

3.0 0.1691264680 0.1993910693 0.1994299778 0.0302646013 0.0303035098 

4.0 0.1599332541 0.1969308809 0.1968850920 0.0369976268 0.0369518379 

5.0 0.1512397561 0.1936663336 0.1935275380 0.0424265775 0.0422877818 

6.0 0.1430188109 0.1895531699 0.1895531699 0.0467950983 0.0465343590 

7.0 0.1352447320 0.1851288318 0.1851288318 0.0502900206 0.0498840998 

8.0 0.1278932289 0.1809636917 0.1803908653 0.0530704628 0.0524976364 

9.0 0.1209413318 0.1762245754 0.1754472670 0.0552832436 0.0545059353 

10.0 0.1143673192 0.1714313668 0.1703816222 0.0570640476 0.0560143031 

Table 5.  Error analysis of exact solution of Neurons, with ANN and RK-4. 

TIME EXACT ANN RK ANN Error RK-4 Error 

0.0 0.8000000000 0.8000000000 0.8000000000 0.0000000000 0.0000000000 

1.0 0.7999905907 0.7931347859 0.7928471594 0.0068558048 0.0071434313 

2.0 0.7999811815 0.7864673308 0.7857823996 0.0135138507 0.0141987819 

3.0 0.7999717724 0.7798260126 0.7788806642 0.0201457599 0.0210911082 

4.0 0.7999623634 0.7732104191 0.7722010199 0.0267519443 0.0277613435 

5.0 0.7999529546 0.7668202288 0.7657874654 0.0331327258 0.0341654892 

6.0 0.7999435458 0.7606870790 0.7596707044 0.0392564668 0.0402728414 

7.0 0.7999341372 0.7548393072 0.7538703788 0.0450948300 0.0460637584 

8.0 0.7999247287 0.7493191969 0.7483973569 0.0506055318 0.0515273718 

9.0 0.7999153202 0.7441593856 0.7432558204 0.0557559347 0.0566594998 

10.0 0.7999059119 0.7393743307 0.7384450299 0.0605315812 0.0614608821 

 

Table 6.  Error analysis of exact solution of CD8+ T cells, with ANN and RK-4. 

TIME EXACT ANN RK ANN Error RK-4 Error 

0.0 0.2000000000 0.2000000000 0.2000000000 0.0000000000 0.0000000000 

1.0 0.2000324617 0.2004285480 0.2005407762 0.0003960863 0.0005083145 

2.0 0.2000677936 0.2010049192 0.2010804895 0.0009371256 0.0010126959 

3.0 0.2001058055 0.2015871710 0.2016140294 0.0014813656 0.0015082240 

4.0 0.2001463177 0.2021273721 0.2021371244 0.0019810544 0.0019908067 

5.0 0.2001891607 0.2026134455 0.2026463832 0.0024242848 0.0024572225 

6.0 0.2002341745 0.2030818691 0.2031392516 0.0028476946 0.0029050772 

7.0 0.2002812077 0.2035494133 0.2036139153 0.0032682056 0.0033327076 

8.0 0.2003301178 0.2040097540 0.2040691799 0.0036796362 0.0037390622 

9.0 0.2003807699 0.2044463071 0.2045043505 0.0040655372 0.0041235806 

10.0 0.2004330371 0.2048418750 0.2049191217 0.0044088380 0.0044860847 

 

Tables 3, 4, 5, and 6 provide a detailed numerical analysis of the performance of the DNN in relation 

to both the analytical solution and the RK-4 method, allowing for a thorough examination of each 

approach’s accuracy. 

The MSE between the analytical solution and the DNN results for glial cells, glioma cells, neurones, 

and CD8+ T cells are, respectively, 1.257617015654127 × 10−6, 1.6871304788930305 × 10−3, 
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1.3961138369358035 × 10−3, and 7.393451449566494 × 10−6. In comparison, the MSE values 

between the analytical solution and the RK-4 method for the same cellular components are 

1.222677328 × 10−6, 1.656768436768 × 10−3, 1.456547481051 × 10−3, and 7.655982046 ×
10−6. This comparative analysis shows that both DNN and RK-4 methods yield results in close 

approximation to the analytical solution, suggesting that each method possesses a comparable degree 

of accuracy. Further, examining the DNN performance across varying hidden layer configurations 

reveals the impact of network depth on approximation accuracy. With 3 hidden layers, the DNN yields 

MSE values of 9.262903642 × 10−6, 1.674901728324 × 10−3, 1.454271966192 × 10−3, and 

8.034574139 × 10−6. Increasing to 5 hidden layers, the MSE values improve to 1.089336208 ×
10−6, 1.679083839423 × 10−3, 1.41948378053 × 10−3, and 7.034810301 × 10−6, respectively. 

This comparison highlights that increasing the number of hidden layers in the DNN tends to enhance 

the model’s approximate accuracy, potentially allowing it to surpass the RK-4 method in certain 

scenarios. Conversely, increasing the order of the RK method may also contribute to improved 

approximation, occasionally exceeding the performance of the DNN. Hence, the selection between 

these methods may depend on the specific requirements of accuracy and computational complexity 

within a given application. 

 

5. Discussion and Conclusions 

The presented study investigates the mathematical modelling of brain tumour dynamics under the 

influence of chemo-immunotherapy, comparing the accuracy of solutions obtained through a DNN 

approach and the classical RK-4 method.  Through numerical simulations, the study assesses the 

precision of DNN-based solutions relative to RK-4 and analytical solutions across different cell 

populations, including glial cells, glioma cells, neurones, and CD8+ T cells. 

Our findings indicate that both the DNN and RK-4 methods provide results closely aligned with the 

analytical solution, validating their effectiveness in modelling the complex behaviours of brain 

tumours.  The MSE values demonstrate that the DNN approach, when structured with sufficient hidden 

layers, can approximate the analytical solution with comparable accuracy to the RK-4 method. 

Specifically, increasing the hidden layers within the DNN results in a decrease in error, suggesting that 

the model’s depth enhances its capacity to capture nuanced relationships in the data generated from 

the chemo-immunotherapy model. For instance, while the DNN with 3 hidden layers achieves a 

reasonable approximation, the configuration with 5 hidden layers achieves even lower MSE values, 

underscoring the importance of network depth in enhancing model fidelity. 

However, the results also reveal that increasing the order of the RK method could yield improved 

approximations as well, demonstrating that, with appropriate tuning, RK methods remain a competitive 

approach for this type of modelling. The relative performance of DNN and RK-4 varies across the 

cellular populations studied, indicating that certain configurations may be better suited to specific cell 

types within the tumour micro-environment. 

In conclusion, this research highlights the potential for DNNs to approximate complex biological 

models with high accuracy, particularly when optimized with an appropriate network 

structure.  Moreover, while DNNs show promise in potentially outperforming RK methods in specific 

instances, the RK-4 method remains robust, especially with an increase in order. Thus, the choice 

between DNN and RK-4 methods should be made based on the specific accuracy requirements, 

computational resources, and characteristics of the cell populations modelled. Future work may 

explore further tuning DNN architectures or hybrid approaches that integrate traditional numerical 

methods and neural networks to achieve even more accurate and computationally efficient solutions 

for modelling chemo-immunotherapy dynamics in brain tumours. 
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